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LETTER TO THE EDITOR 

Thermoelectric power in the balance equation theory 

X L k i t $  
t China Centre of Advanced Science and Technology (World Laboratory), PO Box 8130, 
Beijing 100080, People's Republrc of China 
t State Key Laboratmy of Functional Materials for Informatics, Shanghai Institute of Metallurgy, 
Chinese Academy of Sciences, 865 Changning Road, Shanghai 2W050. People's Republic of 
China 
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Abstract. The thermoelectric power of bulk semiconduclors and quantum well svuctures is 
investigated for the first time using the balance equation vansporl theory extended to weakly 
non-uniform system. In the linear transpon limit the thermopower expressions obtained are 
independent of scattering and equivalent to the results derived from the Boltzmann equation 
with the relaxation time approxmatk"ati Effects of carrier hating (due to a current Row or due 
to an applied electric field in the crossed direction) are examined, showing that thermoelectric 
power is very sensitively dependent on the method of heating the eleetmns. and can change sign 
at low temperatures in Ole case of a strong electric field bias, 

There has recently been an intensified interest in studies of the thermoelectric power 
and the thermoelectric figure of merit in different systems: mesoxopic quantum dots 
[l, 21, macroscopic thin quantum well structures [3], and bulk materials in the presence of 
carrier heating under a strong applied electric field [4]. Previous theoretical treatments of 
thermoelechic power in macroscopic systems are based on the Boltzmann equation [5, 61. 
A recent investigation by Xing, Liu and Ting [4] by the non-equilibrium statistical operator 
method of Zubarev [7] yielded a different formula for thermoelectric power. The purpose 
of this letter is to point out that thermoelechic power can be conveniently analysed from the 
balance equation approach of Lei and Ting [SI, and this has the advantage of easy inclusion 
of hot electron effects. 

We consider electron transport under the influence of an elechic field E and in 
the presence of a small lattice temperature gradient V T ,  The occurrence of the lattice 
temperature gradient makes the transport problem an inhomogeneous one. Since the 
temperature gradient is small we are dealing with a weakly non-uniform case. The Lei-Ting 
balance equation approach [SI for high-field electronic transport has been extended to weakly 
non-uniform systems [9], in which the carrier drift velocity v, the electron temperature T,, 
the average relative electron energy U ,  the carrier density PI and the chemical potential p are 
all field quantities which are weakly dependent on the spatial coordinates, such that their 
spatial gradients are small. Retaining these small quantities to first order (neglecting all the 
second and higher orders of the spatial derivatives) we have the following hydrodynamic 
balance equations [9]: 
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Here f, the frictional force (density), and w ,  the energy transfer rate (density), are functions 
of local quantities n, U ,  T. and T, having expressions exactly the same as in the uniform 
case [8,9]. We consider electron transport in the presence of a small lattice temperature 
gradient along the x direction: VT = (V,T, 0,O). There may be a small drift velocity 
(current flow) and a small electric field in the x direction in addition to the drift velocity 
(current) and the electric field along the y direction: w = (uz, U?, 0) and E = ( E x ,  E,,, 0). 
Here U, and Ex are small, and the spatial variations of all the field quantities are assumed 
to be along the x direction only. We will treat the steady state transport and consider the 
particle number, force and energy balance equations to first order in the small quantities. 
For instance, the gradient operator V, a/ax is a first-order small quantity and U, is also a 
first-order small quantity, thus V,u, is a higher-order small quantity and can be neglected. 
With these factors in mind we obtain the following equations from the general balance 
equations (1)-(3): 

2 f x  O=-- VXU + - + - 3mn m mn (4) 

stating the force balance in the x direction, 

0 = neEy t fr 

w + uyfy = 0 

(5) 

(6) 

stating the force balance in the y direction, and 

stating the energy balance. For small U,, f x  is proportional to U,, and 

f x  p = -- 
n W u ,  (7) 

is the resistivity in the x direction in the presence of drift velocity U? in the y direction. 
Equation (4) can then be written as 

Ex 2.0,~ j 
P 3 eP 
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Noticing that the local energy density of the relative electrons is given by 

U = Z C E k f [ ( e k  - p ) /TI  (9) 

n = 2 C f [ ( & k  - ~ ) / T J  

k 

and the local number density n is related to the local chemical potential p by 

(10) 
k 

f ( x )  = (e" + I)-'  is the Fermi function and &k = k2/2m for an isotropic parabolic band 
system), we can put equation (8) in the form 

j ,  = L"(E, - v , p / e )  + L'~(-V,T,) (11) 
where 

L" = I / p  
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and 

with ( = p/G and function FJy) defined by 

In the case where there is no current flow along the y direction, we have Te = T and 
V,T. = V,T,  and equation (11) becomes the well-known (weak) current transport equation 
[6] in the presence of temperature and chemical gradients. The thermoelectric power S is 
then [a] 

This is the same result as obtained from the Boltmann equation for a one-parabolic-band 
material by assuming a constant relaxation time in [3]. If the relaxation time cannot be 
treated as a constant, Boltzmann theory predicts a thermoelectric power that may weakly 
depend on the scattering [6]. The thermoelectric power formula obtained in [4] using the 
non-equilibrium statistical operator method, which is different from that obtained with the 
Boltzmann-equation theory, also weakly depends on the scattering. The present balance 
equation theory, however, leads to a thermopower formula that is independent of scattering. 
This result is physically understandable: balance equation theory develops from the force 
balance of the system. In addition to contributing to the possible energy dissipation the 
only role the scattering plays is to induce a frictional force. Since thermoelectric power is 
defined under the open circuit (zero-current) condition [6], and the frictional force in the 
balance equation theory always vanishes when the drift velocity is zero, we should expect 
a thermoelectric power independent of scattering. 

In the presence of a strong current flow in the y direction, electrons are heated. The 
electron temperature T. is generally higher than the lattice temperature T. The gradient 
of the electron temperature V,T,, however, depends not only on the gradient of the lattice 
temperature V x T ,  but also on the electron temperature itself and the method of controlling 
the electron heating. The thermoelectric power can be written as 

GTJST stands for V;T,/V,T and should be calculated from balance equations (5) and (6) 
under the conditions pertinent to the experiment. 

The hydrodynamic balance equations (1x3)  for weakly non-uniform cases are also 
valid in a two-dimensional system, if the prefactor $ in equation (2) is replaced by unity, 
and the prefactor in equation (3) is replaced by two. The thermoelectric power S for a 
twMimensional system (e.g. a quantum well structure) is easily derived to be. 

in agreement with that given by [31. 
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Figure 1. Thermoelectric power S of an n-type GaAs-based quantum well structure (IOnm 
thickness) at zero bias is shown as a function of lanice temperature T for different electron 
sheet densities Ns. The electron effective mass is taken to be m = O.O7m, (m,  is the free 
elecmn mass). 
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Figure 2. ?hermwlectric powa S under fixed-velocity bias condition is shown as a function of 
lanice tempemure T for the same Gas-based quantum well smeure as described in figure I 
having electron sheet density N, = 2.5 x IOt5  ,-I 121 for several different bias velwities 
U? = 0. 20, 100. 200. 250 and 300 km s-'. 

To have an idea how the thermoelectric power depends on the carrier density. lattice 
temperature and the method of heating the electrons, we discuss an n-type GaAs-based thin 
( I O n m  thickness along the z direction) quantum well structure. Electrons change band in 
the x-y plane, with a parabolic band having an effective mass m = 0.07m, (me is the free 
electron mass). Only the lowest subband occupation needs to be taken into account for the 
carrier density and temperature of interest. The thermoelectric power S as a function of 
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lattice temperature T ,  calculated from equation (17) for the case without a current flow in 
the y direction (STJGT = I ) ,  is shown in figure 1 for different carrier sheet densities Ns 
ranging from 2 x to'6 m-' to 2 x to'' m+. 
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IO 

Figure 3. Thermoelectric power S under fixed-field bias condition is shown as a function 
of lattice iemperame T for Lhe same GaAs-based quanhlm well s t m c h m  as described in 
figure 1 having elemon sheet density N, = 2,s x IO" m-' [Z] for several different bias 
fields E y  = 0, 0.1. 0.4. 1.0 and 2.0 kV em-'. 

In order to see the hot electron effect on thermoelectric power we examine two kinds 
of bias situation: (a) a fixed current flowing along the y direction (fixed velocity bias), 
or (b) applying a fixed electric field along the y direction (fixed field bias). The electron 
temperature T, and ST,/ST are calculated from equations (5 )  and (6) under the appropriate 
bias condition. The carrier sheet density is assumed to be Ns = 2.5 x m-*, which is 
high enough for the balance equation theory to apply. Scatterings by the remote (locating 
at a distance 18 nm from the well centre) and background impurities, acoustic phonons 
(deformation potential and piezoelectric couplings with electrons), and polar optical phonons 
(Frohlich coupling with electrons) are included. Full dynamic electron-electron screening is 
considered within the random phase approximation. The material and the electron-phonon 
coupling parameters used here are the same as those used in [ 101, and the impurity scattering 
strength is such that the low-temperature linear mobility is equal to 1.0 mz V-' s-' . e  Th 
thermoelectric power as a function of lattice temperature T ,  obtained under fixed velocity 
bias conditions, is plotted in figure 2 for different bias velocities uy = 0, 20, 100, 200. 250 
and 300 km s-l. Figure 3 shows the thermoelectric power as a function of lattice temperature 
T for the same system but under fixed field bias conditions at several different bias fields 
E, = 0, 0.1. 0.4, 1.0 and 2.0 kV cm-'. Unlike in the zero-bias case where the thermopower 
S is determined only by the temperature, under hot carrier conditions S depends not only on 
the electron temperature T,, but also on the factor STJGT, which varies dramatically with 
the bias conditions. In the case of fixed velocity bias, (GTJST)+ is always positive, and so 
is the thermopower S, as shown in figure 2. In the case of fixed field, however, we find that 
under high bias fields ( E ,  > 1 kV cm-') (STe/8T)+ and thus S, can be negative within 
a small low-temperature range. For instance, at bias Ey = 2.0 kV cm-' thermopower S 
become negative at temperature T c 85 K. This finding is, to certain extent, in agreement 
with that reported in 141. 
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